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Entanglement dynamics of non-interacting two-qubit
system under a squeezed vacuum environment
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Entanglement dynamics of two non-interacting atoms in a squeezed vacuum reservoir is studied. Several
examples with different initial entangled states are investigated, and it is found that entangled atoms
become disentangled faster in squeezed vacuum than in ordinary vacuum, and larger squeezing results in
faster entanglement decay. The time evolution of the concurrence and the separability “distance” Λ can
be used to explain this novel entanglement sudden death phenomenon.
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Entangled states are an indispensable ingredient of quan-
tum computation and quantum information[1]. The en-
tanglement between distant atoms can be prepared by
detecting cavity decays[2,3], dipole-dipole interactions[4]
and so on. However, quantum entanglement is fragile
due to the interaction with an environment, and this is-
sue is recognized as a fundamental obstacle in practical
quantum computing and quantum information process-
ing.

In recent years, controlling the evolution of entangle-
ment between atoms interacting with the environment
has received much attention[5,6]. It has been predicted
that two initial entangled and afterwards not interact-
ing atoms become separable (completely disentangled)
within a finite time due to the coupling with the vacuum
noise[7,8]. Especially, the decay rate of entanglement of
two qubits is faster than local decoherent rate (sponta-
neous emission rate) of each atom. Otherwise, Ficek and
Tanaś found an unusual entanglement revival after the
disentanglement which results from the presence of col-
lective damping[9]. In a sense, the collective behaviors
seem to be beneficial to alleviate the disentanglement of
the system. In general, the characteristic of the environ-
ment plays an important role in the evolution of multi-
particle entanglement.

We are inspired by the above works and begin to inves-
tigate the dynamical details of the entanglement evolu-
tion in squeezed vacuum. In the present paper we study
the entanglement dynamics of two non-interacting en-
tangled qubits in a squeezed vacuum environment. We
present the exact solutions of density matrix elements of
the system, and analyze the entanglement dynamics of
the different initial states using the concurrence and the
separability “distance” Λ which can serve as the mea-
surements of the bipartite entanglement and can explain
the novel disentanglement phenomenon.

We consider the situation where the atoms A and
B are coupled to squeezed vacuum reservoir, indepen-
dently. Initially, the two atoms are entangled, then they
are separated far enough that there is no direct inter-
action (for example dipole-dipole interaction) between
them. The relationship between the ordinary vacuum

and squeezed vacuum can be expressed by means of the
squeezed operator[10]

|0〉sq = S(ξ) |0〉 , (1)

where S(ξ) = exp(ξ∗ak0+kak0−k − ξa+
k0+ka+

k0−k) with
ξ = reiθ , r being the squeezed parameter and θ being
the reference phase for squeezed field. The time evolu-
tion of the two atoms interacting with squeezed vacuum
is studied using the Lindblad form of the master equa-
tion,
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where N = sinh2 r and M = e−iθ sinh r cosh r character-
ize squeezed vacuum and fulfill |M |2 ≤ N(N + 1). For
simplification, we only consider the ideal squeezing, i.e.,
|M | = N(N +1). ΓA = ΓB = γ are spontaneous emission
rates of the two atoms. σi

+ = |e〉i 〈g| and σi
− = |g〉i 〈e|

(i = A, B) are atomic raising and lowering operators,
respectively. The two-qubit standard bases are given by

|1〉 = |e〉A |e〉B , |2〉 = |e〉A |g〉B ,

|3〉 = |g〉A |e〉B , |4〉 = |g〉A |g〉B . (3)

In order to determine the entanglement degree between
the atoms, we use concurrence which is widely ac-
cepted as a measurement of entanglement in a two-qubit
system[11,12],

C = max(0, Λ), Λ ≡
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4, (4)

where the quantities λi are the eigenvalues in decreasing
order of the matrix

ξ = ρ(σA
y ⊗ σB

y )ρ∗(σA
y ⊗ σB

y ), (5)

where ρ∗ denotes the complex conjugation of ρ in the
standard basis, σ

A(B)
y are usual Pauli matrices expressed
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in the same basis. The concurrence varies from C = 0 for
a product (disentangled) state to C = 1 for a maximally
entangled state. It is apparent that the concurrence is
not negative for all the states (entangled and disentan-
gled), but the quantity Λ can be negative. Furthermore,
if Λ(ρ) is strictly negative, it implies that ρ must be both
mixed and separable[11,12].

For an initial state in the more specialized class of bi-
partite “X” density matrix[13,14]

ρ(0) =

⎛
⎜⎝

a w
b z
z∗ c

w∗ d

⎞
⎟⎠ , (6)

the time evolution does not change the structure of den-
sity matrix, i.e., all initial zero elements of the matrix
are always zero. The concurrence of the above density
matrix can be expressed by

C[ρ(t)] = max(0, Λ1, Λ2),

Λ1 = 2(|ρ23| − √
ρ11ρ44), Λ2 = 2(|ρ14| − √

ρ22ρ33). (7)

For the case of squeezed vacuum, we list the time-
dependent solutions of the density matrix elements re-
lated to the concurrence as

ρ11(t) = (2N + 1)−2{[N + (N + 1)x]2a + N2(1 − x)2d

+N(1 − x)[N + (N + 1)x](b + c)}, (8a)

ρ22(t) = (2N + 1)−2{(N + 1)(1 − x)[N + (N + 1)x]a

+N(1 − x)(Nx + N + 1)d

+(Nx + N + 1)[N + (N + 1)x]b

+N(N + 1)(1 − x)2c}, (8b)

ρ33(t) = (2N + 1)−2{(N + 1)(1 − x)[N + (N + 1)x]a

+N(1 − x)(Nx + N + 1)d + N(N + 1)(1 − x)2b

+(Nx + N + 1)[N + (N + 1)x]c}, (8c)

ρ44(t) = (2N + 1)−2[(N + 1)2(1 − x)2a

+(Nx + N + 1)2d

+(N + 1)(1 − x)(Nx + N + 1)(b + c)], (8d)
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x

2
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here x = exp[−(2N + 1)γt] and y = |M | γt. Appar-
ently, the time evolutions of the diagonal elements of the
density matrix are affected only by N , i.e., squeezing
parameter r, while ρ14(t) and ρ23(t) are dependent on
not only N , but also M/M∗ = e−2iθ which includes a
reference phase θ. It is easily found that steady-state so-
lutions are ρ11(∞) = N2/(2N +1)2, ρ22(∞) = ρ33(∞) =
N(N +1)/(2N +1)2, and ρ44(∞) = (N +1)2/(2N +1)2.
In contrast to the common vacuum case (no squeezing),
in which the final state of the two-atom system must be
their ground state |4〉, the populations of |1〉, |2〉, and |3〉
of the total system are not zero, which is dependent on
the degree of the squeezing. Here, we are interested in the
influences of the squeezing parameter on the two-particle
entanglement when the two atoms interact independently
with squeezed vacuum. It is difficult to give a simple an-
alytic expression for the concurrence and the quantity
Λ of two-atom entanglement in squeezed vacuum, so we
study the details with the help of the numerical simula-
tions (θ is set to zero for all figures below).

First, we study a special class of entangled states with
a single parameter λ,

ρ(0) =
1
3

⎛
⎜⎝

λ
1 1
1 1

1 − λ

⎞
⎟⎠ . (9)

The dependence of the concurrence of this state on the
parameter λ is shown in Fig. 1. When N = 0, finite-
time disentanglement takes place for λ > 1/3; in other
words, for a certain parameter regime, entanglement of
the initial state only disappears asymptocally[7]. How-
ever, when N = 0.1, entanglement goes to zero for all the
values of λ. This surprising result shows that the squeez-
ing environment prevents the existence of entanglement
drastically and the disentanglement is little related to
the initial state.

Next, we study two examples, which are the well-
known Bell states |Ψ±〉 = (|eg〉 ± |ge〉)/√2 and |Φ±〉 =
(|ee〉± |gg〉)/√2. The time evolutions of the concurrence
and two quantities Λ1,2 are plotted in Fig. 2. Similar to
the above single-parameter model, the concurrence goes
to zero in both cases of two kinds of Bell states. Dis-
entanglement time in squeezed vacuum is much shorter
than that in ordinary vacuum. Entanglement dynam-
ics of |Ψ±〉 is determined by Λ1 which is positive before

Fig. 1. Entanglement decay via vacuum noise starting from
the initial entangled state (9) with λ between 0 and 1. Finite-
time complete disentanglement occurs for all the values of λ.
Squeezing parameter N is 0.1.
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Fig. 2. Concurrence and separability quantity Λ of Bell states
|Ψ±〉 (left) and |Φ±〉 (right). Solid, dashed, and dotted lines
represent the time evolutions for different squeezing N = 0,
0.1, 1, respectively.

disentanglement, and Λ2 is negative for all the time. It
is interesting that it is opposite to |Φ±〉, in which Λ2 is
positive in the beginning and Λ1 keeps negative. This
result can be explained from Eq. (7) that when the ini-
tial state is |Ψ±〉, ρ11(0) = ρ44(0) = ρ14(0) = 0 results in
Λ1(0) > 0 and Λ2(0) < 0. Afterwards the values of ρ11,
ρ44, ρ14 begin to be nonzero, Λ1 decreases along with the
time and Λ2 becomes close to zero but cannot be posi-
tive. When the initial state is |Φ±〉, the case is just the
opposite which can be observed clearly in Fig. 2. Another
remarkable phenomenon is that the time evolution of the
concurrence for the two classes of Bell states is not iden-
tical completely, although the trends of them are similar.
It is related to non-identical evolutions of the diagonal el-
ements of density matrix. Compared with |Ψ±〉, |Φ±〉 is
more sensitive to the atomic decay whether the environ-
ment is ordinary vacuum or squeezed vacuum. Qualita-
tively, the entanglement decay of |Φ±〉 is only dependent
on the influence of the vacuum noise on the combined
state when both atoms stand on excited state |ee〉, not
on the ground state |gg〉. On the other hand, |Ψ±〉 is co-
herent superposition of two product states |eg〉 and |ge〉.
These result in the difference of finite-time disentangle-

ment between Bell states.
In summary, we have investigated the role of squeezed

vacuum playing in the entanglement dynamics of two-
atom system in which the atoms interact with their reser-
voirs independently. The single-parameter density ma-
trix and Bell states are checked and it is found that
squeezing quickens the disentanglement of the system,
and the separability quantity Λ is helpful to understand
the details of entanglement sudden death. These may
be beneficial to a deep understanding of the relation be-
tween decoherence and disentanglement and will be of
importance for both the foundation of quantum mechan-
ics and quantum information processing.
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